Not registered (Friday, December 6, 2024 10:11:42 PM)
Complex numbers:
The Cartesian complex plane
The different complex number forms
Operations with complex numbers
The fundamental theorem of algebra
Vector spaces:
The n-dimensional vector space Rn and introduction to general vector spaces
Vector subspaces and subspace criterion
Linear independence of vectors
The linear span of a set of vectors, basis und dimension of a vector space
Linear transformations:
Linear transformations and matrices
Kernel, image and the rank-nullity theorem
Applications: geometric transformations and change of basis
Eigenvalues and eigenvectors
Finding eigenvalues and eigenvectors
Multiplicity of eigenvalues
Applications: matrix diagonalization, constant-coefficient linear differential equations
Ruhrländer, M.: Lineare Algebra für Naturwissenschaftler und Ingenieure, Pearson Studium
Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler (Bände I und II), Vieweg+Teubner, 12. Auflage
Gramlich, G.M.: Lineare Algebra: Eine Einführung, Carl Hanser Verlag
count only with a positive contribution to the final module grade with a total of 30%