t.BA.WI.STDM.19HS (Statistisches Data Mining) 
Modul: Statistisches Data Mining
Diese Information wurde generiert am: 01.10.2023
Nr.
t.BA.WI.STDM.19HS
Bezeichnung
Statistisches Data Mining
Veranstalter
T IDP
Credits
4

Beschreibung

Version: 1.0 gültig ab 01.02.2020
 

Kurzbeschrieb

Das Modul führt in die Grundprinzipien des Statistischen Data Mining ein. Es werden Methoden aus dem überwachten und unüberwachten Lernen behandelt und an konkreten Fallbeispielen angewendet.

Modulverantwortung

Helmut Grabner 

Lernziele (Kompetenzen)

Ziel Kompetenzen Taxonomiestufen
Sie kennen die Grundlagen des Data-Mining Processes. F K1, K2
Sie kennen Verfahren aus dem unüberwachten Lernens (unsupervised learning) und Ihre wichtigsten Eigenschaften. Sie können erkennen, für welche Probleme sie geeignet sind und können diese anwenden, um neue Probleme zu lösen.  F, M K1, K2, K3
Sie kennen Verfahren aus dem überwachten Lernens (supervised learning) und Ihre wichtigsten Eigenschaften. Sie können erkennen, für welche Probleme sie geeignet sind und können diese anwenden, um neue Probleme zu lösen.  F, M K1, K2, K3
Sie können Berechnungen für konkrete Fragestellungen in einer Programmiersprache (z.B. R oder python) unter zuhilfenahme von Softwarepaketen implementieren und interpretieren. F, M K4, K5

Modulinhalte

Unüberwachtes Lernen

  • Ähnlichkeits- und Distanzmasse, Ausreisserdetektion
  • ​Eine Auswahl bekannter Methoden zur Datenreduktion, wie Principal Component Analysis (PCA), Multidimensional scaling, t-SNE 
  • Eine Auswahl bekannter und moderner Clustering-Methoden, wie k-means Clustering und hierarchical Clustering

Überwachtes Lernen

  • Grundlagen, Modellselektierung, Cross-Validation
  • Auswertung und Performance Evaluation von Klassifikatoren
  • Eine Auswahl bekannter und moderner Methoden, wie Bayes Classifier, Nearest Neighbor Classifier (NN), k-NN, Support Vector Machines, Logistic Regression, Decision Trees und Random Forest
  • Ensemble Methoden (Bagging und Boosting)

Lehrmittel/Materialien

  • Foliensätze
  • ​Arbeitsblätter und / oder jupyter Notebooks fürs Praktikums
  • Ergänzende Literatur

  • Duda, Hart, Stork, Pattern Classification, 2001, 2nd Edition
  • James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning, 2013

Zulassungs-voraussetzungen 

WaSt1 - WaSt3

Unterrichtssprache

(X) Deutsch ( ) Englisch

Teil des Internationalen Profils

( ) Ja (X) Nein

Modulausprägung

Typ 2a
  Details siehe unter: T_RL_Richtlinie_Modulauspraegungen_Stundengutschriften

Leistungsnachweise

Bezeichnung Art Form Umfang Bewertung Gewichtung
Leistungsnachweise während Studiensemester Selbständiges Bearbeiten mehrerer Aufgaben während des Semesters     Benotung max. 40 %
Semesterendprüfung Schlussprüfung  Schriftlich 90 Min. Benotung min. 60 %

Bemerkungen

Die genaue Vorgehensweise des Leistungsnachweises wird von dem Dozenten zu Beginn der Vorlesung schriftlich kommuniziert.

Rechtsgrundlage

Die Modulbeschreibung ist neben Rahmenprüfungsordnung und Studienordnung Teil der Rechtsgrundlage. Sie ist verbindlich. Eine in der ersten Unterrichtswoche des Semesters schriftlich festgehaltene und kommunizierte Modulvereinbarung kann die Modulbeschreibung präzisieren. Die Modulvereinbarung ersetzt nicht die Modulbeschreibung.
Kurs: Statistisches Data Mining - Vorlesung
Nr.
t.BA.WI.STDM.19HS.V
Bezeichnung
Statistisches Data Mining - Vorlesung

Hinweis

  • Für das Stichdatum 01.08.2099 ist kein Modulbeschreibungstext im System verfügbar.