t.BA.XXM5.LA2.19HS (Lineare Algebra 2) 
Modul: Lineare Algebra 2
Diese Information wurde generiert am: 28.05.2020
Nr.
t.BA.XXM5.LA2.19HS
Bezeichnung
Lineare Algebra 2
Veranstalter
T ICP
Credits
4

Beschreibung

Version: 1.0 gültig ab 01.02.2019
 

Kurzbeschrieb

Im vorliegenden Kurs werden die Grundlagen der linearen Algebra behandelt. Dazu gehören Vektorräume, lineare Abbildungen, sowie Eigenwerte und Eigenvektoren. Sie lernen, wie lineare Abbildungen zwischen Vektorräumen mit Hilfe von Vektoren und Matrizen mathematisch beschrieben werden können. Sie wenden diese Konzepte unter anderem zur Fourieranalyse und zur Lösung linearer Differentialgleichungen an.

Modulverantwortung

Schmid Matthias (scmi)

Lernziele (Kompetenzen)

Ziel Kompetenzen Taxonomiestufen

Sie kennen den abstrakten Begriff eines Vektorraumes und Unterräumen. Sie können Vektoren als Koordinatenvektoren bezüglich einer Basis beschreiben. Insbesondere kennen Sie die Fourierreihe und die diskrete Fouriertransformation als Anwendung dieses Konzepts.

F, M K2, K3

Sie sind vertraut mit linearen Abbildungen zwischen Vektorräumen und können diese bezüglich beliebiger Basen mit Hilfe von Matrizen und Vektoren beschreiben.

F, M K2, K3

Sie können Eigenwerte und Eigenvektoren berechnen und Matrizen auf deren Diagonalisierbarkeit hin untersuchen. Sie können die Diagonalisierung von Matrizen als wichtige praktische Erkenntnis aus der linearen Algebra auf technische Kontexte anwenden.

F, M K2, K3

Sie erkennen lineare gewöhnliche Differentialgleichungen mit konstanten Koeffizienten und können diese lösen.

F, M K2, K3

Modulinhalte

Vektorräume

  • Vektorräume, Vektorraumaxiome

  • Unterraum

  • Lineare Unabhängigkeit von Vektoren

  • Basis und Dimension

  • Orthonormierte Basen

  • Fourierreihen und diskrete Fourier-Transformation

Lineare Abbildungen

  • Lineare Abbildungen

  • Matrizen als lineare Abbildungen (Streckung, Drehung, Spiegelung und Projektion)

  • Fundamentalräume einer Matrix (Kern und Bild)

  • Invertierbare lineare Abbildungen (Isomorphismen)

  • Basiswechsel

Eigenwerte und Diagonalisierung

  • Berechnung von Eigenwerten und Eigenvektoren

  • Eigenbasis und Diagonalisierung von Matrizen

  • Symmetrische und orthogonale Matrizen

  • Lineare gewöhnliche Differentialgleichungen mit konstanten Koeffizienten

Lehrmittel/Materialien

Abhängig vom jeweiligen Dozierenden

Ergänzende Literatur

  • Lernbuch Lineare Algebra und Analytische Geometrie,
    Gerd Fischer, Florian Quiring,

    Springer Spektrum Verlag, 2. Auflage,
    http://dx.doi.org/10.1007/978-3-8348-2379-3

  • Lineare Algebra für Naturwissenschaftler und Ingenieure,
    Michael Ruhrländer,
    Pearson Studium
    ISBN 978-3-86894-271-2

  • Formeln, Tafeln, Begriffe (Mathematik, Physik, Chemie),
    Orell Füssli Verlag,
    ISBN 978-3-280-04059-1

Zulassungs-voraussetzungen 

  • Kenntnisse der Mathematik der technischen Berufsmaturität
  • Kenntnisse der linearen Algebra 1 für ET/ST
     

Unterrichtssprache

(X) Deutsch ( ) Englisch

Teil des Internationalen Profils

( ) Ja (X) Nein

Modulausprägung

Typ 2b
  Details siehe unter: T_CL_Modulauspraegungen_SM2025

Leistungsnachweise

Bezeichnung Art Form Umfang Bewertung Gewichtung
Leistungsnachweise während Studiensemester Nach Absprache schriftlich oder mündlich   Note 20%
Semesterendprüfung Prüfung schriftlich 120 min Note 80%

Bemerkungen

 

Rechtsgrundlage

Die Modulbeschreibung ist neben Rahmenprüfungsordnung und Studienordnung Teil der Rechtsgrundlage. Sie ist verbindlich. Eine in der ersten Unterrichtswoche des Semesters schriftlich festgehaltene und kommunizierte Modulvereinbarung kann die Modulbeschreibung präzisieren. Die Modulvereinbarung ersetzt nicht die Modulbeschreibung.
Kurs: Lineare Algebra 2 - Vorlesung
Nr.
t.BA.XXM5.LA2.19HS.V
Bezeichnung
Lineare Algebra 2 - Vorlesung

Hinweis

  • Für das Stichdatum 01.08.2099 ist kein Modulbeschreibungstext im System verfügbar.